

International summer school mpipks Dresden August 29 - September 30, 2005

MULTIPARTITE STATES UNDER LOCAL UNITARY TRANSFORMATIONS

Laura Cattaneo Institute for Applied Mathematics University of Bonn, Germany

joint work with S.Albeverio (IAM Bonn), S.M. Fei (IAM Bonn/CNU Beijing), X.H. Wang (CNU Beijing)

Quantum Information

Introduction

Any measure of entanglement $E(\cdot)$ on a finite dimensional Hilbert space

 $\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2 \otimes \cdots \otimes \mathcal{H}_N$

is constant under *local unitary transformations*

 $U_1 \otimes U_2 \otimes \cdots \otimes U_N.$

Goal: To find a complete set of invariants under local unitary transformations $U_1 \otimes U_2 \otimes \cdots \otimes U_N.$

Bipartite case [1]

Let $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$ with dim $(\mathcal{H}_i) = N_i$, i = A, B.

For **pure states**, i.e., states

$$|\psi\rangle = \sum_{j=1}^{N_A} \sum_{k=1}^{N_B} a_{jk} |j\rangle_A \otimes |k\rangle_B,$$

where $\sum_{i=1}^{N_A} \sum_{k=1}^{N_B} a_{jk} a_{jk}^* = 1$ and $\{|l\rangle_i\}_{l=1,2,\dots,N_i}$ is an orthonormal basis of \mathcal{H}_i , i = A, B, the functions

 $I^{A}_{\alpha}(|\psi\rangle) = \operatorname{Tr}(\operatorname{Tr}_{A}(|\psi\rangle\langle\psi|))^{\alpha}, \ I^{B}_{\alpha}(|\psi\rangle) = \operatorname{Tr}(\operatorname{Tr}_{B}(|\psi\rangle\langle\psi|))^{\alpha}$

are invariant under local unitary transformations $U_A \otimes U_B$, for any power $\alpha \in \mathbb{N}$.

Theorem. The set of invariants

$$\{I_{\alpha}^{A}(\cdot) \mid \alpha = 1, \dots, \min\{N_{A}, N_{B}\}\}$$

is complete.

Remark. The same holds for the set $\{I_{\alpha}^{B}(\cdot)\}$.

Consider now **mixed states**, i.e., states described by a density

$$\rho = \sum_{j=1}^{n} \lambda_j |\varphi_j\rangle \langle \varphi_j|,$$

where $n \leq N_A N_B$, $0 < \lambda_j \leq 1$, and $\{|\varphi_j\rangle\}_{j=1,2,...,n}$ is a set of normalized pure states.

The functions

$$J^A_{\alpha}(\rho) = \operatorname{Tr}(\operatorname{Tr}_A \rho)^{\alpha}, \ J^B_{\alpha}(\rho) = \operatorname{Tr}(\operatorname{Tr}_B \rho)^{\alpha}$$

are *invariant under local unitary transformations* $U_A \otimes U_B$. However, these invariants are not sufficient in the case of mixed states.

Let us therefore introduce the following *further invariants*:

 $\Omega(\rho)_{ik} = \operatorname{Tr}(\operatorname{Tr}_B(|\varphi_i\rangle\langle\varphi_i|)\operatorname{Tr}_B(|\varphi_k\rangle\langle\varphi_k|))$ $X(\rho)_{ikl} = \operatorname{Tr}(\operatorname{Tr}_B(|\varphi_i\rangle\langle\varphi_i|)\operatorname{Tr}_B(|\varphi_k\rangle\langle\varphi_k|)\operatorname{Tr}_B(|\varphi_l\rangle\langle\varphi_l|))$

where j, k, l = 1, ..., n.

 Ω can be completed to a $(N_A N_B \times N_A N_B)$ -matrix by defining $\Omega(\rho)_{jk} = 0$ for j or k bigger than n. A mixed state ρ is called **generic** if $\Omega(\rho)$ is non-degenerate.

For mixed generic states *the set of invariants* Theorem.

 $\{J^{A}_{\alpha}(\cdot) \mid \alpha = 1, \dots, \min\{N_{A}, N_{B}\}\} \cup \{\Omega(\cdot), X(\cdot)\}$

is complete.

Tripartite case

Let $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_C$ with dim $(\mathcal{H}_i) = N_i$, i = A, B, C.

Consider **pure states**, i.e., states

$$|\psi\rangle = \sum_{j=1}^{N_A} \sum_{k=1}^{N_B} \sum_{l=1}^{N_C} a_{jkl} |j\rangle_A \otimes |k\rangle_B \otimes |l\rangle_C,$$

where $\sum_{i=1}^{N_A} \sum_{k=1}^{N_B} \sum_{l=1}^{N_C} a_{jkl} a_{jkl}^* = 1$ and $\{|m\rangle_i\}_{m=1,2,...,N_i}$ is an orthonormal basis of $\mathcal{H}_i, i = A, B, C$.

Remark. A main tool in the bipartite case was the *Schmidt decomposition*. Such decomposition holds however only for bipartite systems. A direct generalization is therefore not possible.

First step: handle \mathcal{H} as a bipartite system A-BC:

$$|\psi'\rangle = U_A \otimes U_{BC} |\psi\rangle$$

with U_A , U_{BC} unitary $\} \Leftrightarrow \begin{cases} I_\alpha^A(|\psi\rangle) = I_\alpha^A(|\psi'\rangle) \\ \text{for } \alpha = 1, \dots, \min\{N_A, I_A\} \end{cases}$

Remark. U_A and U_{BC} depend on $|\psi\rangle$ and can be found explicitly (via singular value) decomposition).

If $|\psi'\rangle = U_A \otimes U_{BC} |\psi\rangle$, the problem can be reduced to a bipartite one via partial trace on \mathcal{H}_A . The following lemma is easy to prove.

Lemma. Let $|\psi'\rangle = U_A \otimes U_{BC} |\psi\rangle$ and define $\rho = \text{Tr}_A(|\psi\rangle\langle\psi|)$. If $U_{BC}\rho U_{BC}^{\dagger} = (U_B \otimes U_C)\rho (U_B^{\dagger} \otimes U_C^{\dagger}),$

there exist unitary matrices V_A , V_B , V_C such that $|\psi'\rangle = V_A \otimes V_B \otimes V_C |\psi\rangle$.

Problem: In general ρ is a <u>mixed state</u> and we don't have a general solution for such states.

$N_B N_C$

Special case 1: ρ is a generic mixed state [2]

The functions

$$I_{\alpha,\beta}^{A,j}(|\psi\rangle) = \operatorname{Tr}(\operatorname{Tr}_{j}(\operatorname{Tr}_{A}(|\psi\rangle\langle\psi|))^{\alpha})^{\beta},$$

where $j \in \{B, C\}$, $\alpha = 1, ..., N_B N_C$, and $\beta = 1, ..., \{N_k | k \in \{B, C\} \text{ and } k \neq j\}$, are invariant under local unitary transformations $U_A \otimes U_B \otimes U_C$.

Remarks.

•
$$I^A_{\alpha}$$
 is included as $I^{A,B}_{\alpha,1} = I^{A,C}_{\alpha,1}$.

• In general, the functions

$$\operatorname{Tr}(\operatorname{Tr}_{j_1}(\operatorname{Tr}_{j_2}(\ldots(\operatorname{Tr}_{j_N}|\psi\rangle\langle\psi|)^{\alpha_N}\ldots)^{\alpha_3})^{\alpha_2})^{\alpha_1}$$

are invariant under local unitary transformations $U_1 \otimes U_2 \otimes \cdots \otimes U_N$.

Theorem. Let $N_A = N_B N_C$. For states $|\psi\rangle$ such that $\rho = \text{Tr}_A(|\psi\rangle\langle\psi|)$ is a generic mixed state the set of invariants $\{I^{A,j}_{\alpha,\beta}(|\psi\rangle)\} \cup \{\Omega(\rho), X(\rho)\}$

is complete.

Remarks.

- The invariance of $\{I_{\alpha,\beta}^{A,j}\}$ implies automatically the invariance of Ω_{jk} and X_{jkl} if $\lambda_j \neq \lambda_k \neq \lambda_l$ in $\rho = \sum_{i=1}^n \lambda_i |\varphi_i\rangle \langle \varphi_i|$.
- $N_A = N_B N_C$ is needed in order to have ρ generic.

Special case 2: U_{BC} is unitarily decomposable [3]

Definition. Let A be a $m \times m$ block matrix with blocks of dimension $n \times n$. The realigned matrix A is defined as

 $\tilde{A} = [\operatorname{vec}(A_{11}), \operatorname{vec}(A_{21}), \dots, \operatorname{vec}(A_{m1}), \operatorname{vec}(A_{12}), \dots, \operatorname{vec}(A_{mm})]^T,$

where
$$\operatorname{vec}(A_{jk}) = [a_{11}^{jk}, a_{21}^{jk}, \dots, a_{n1}^{jk}, a_{12}^{jk}, \dots, a_{n2}^{jk}, \dots, a_{nn}^{jk}]$$

for every block $A_{jk} = (a_{pq}^{jk})_{p,q=1,\dots,n}$.

Consider U_{BC} as a block matrix with blocks of dimension $N_C \times N_C$. If the rank of the realigned matrix U_{BC} is one, there exist two unitary matrices U_B and U_C such that $U_{BC} = U_B \otimes U_C$.

|T|

Theorem. Let $|\psi\rangle$ and $|\psi'\rangle$ be two tripartite states. If $I^A_{\alpha}(|\psi\rangle) = I^A_{\alpha}(|\psi'\rangle)$ for $\alpha = 1, \dots, \min\{N_A, N_B N_C\}$ and the rank of U_{BC} is one, $|\psi\rangle$ and $|\psi'\rangle$ are equivalent under local unitary transformations.

Remarks.

- The decomposition $U_{BC} = U_B \otimes U_C$ is more than what we need: $1 \otimes U_{BC} |\psi\rangle =$ $1 \otimes U_B \otimes U_C |\psi\rangle$ would be enough.
- Condition on U_{BC} : $|\psi\rangle$ cannot be compared with all $|\psi'\rangle$.
- No conditions on the N_i 's \Rightarrow we can also look at B-AC or C-AB.

Open problems

- non-generic bipartite mixed states (\rightarrow tripartite pure states);
- tripartite mixed states;
- generalization to **multipartite** systems: the functions

 $\operatorname{Tr}(\operatorname{Tr}_{j_1}(\operatorname{Tr}_{j_2}(\ldots(\operatorname{Tr}_{j_N}|\psi\rangle\langle\psi|)^{\alpha_N}\ldots)^{\alpha_3})^{\alpha_2})^{\alpha_1}$

are invariant under local unitary transformations $U_1 \otimes U_2 \otimes \cdots \otimes U_N$.

N-partite pure states \leftarrow (N-1)-partite mixed states

References

- [1] S. Albeverio, S.M. Fei, P. Parashar, and W.L. Yang, Phys. Rev. A 68, 010303 (R) (2003).
- [2] S. Albeverio, L. C., S.M. Fei, X.H. Wang, to appear in *Rep. Math. Phys.*
- [3] S. Albeverio, L. C., S.M. Fei, X.H. Wang, to appear in *I.J.Q.I.*